y

Drawing Text With ATSUI

Session 202




y

Drawing Text With ATSUI

Xavier Legros
Mac OS X Evangelist
Apple Worldwide Developer Relations



Overview

* Introduction to ATSUI
o Features
o Concepts

* New API For Jaguar

* Dos and Don’ts



What Is ATSUI?

* Mac OS X basic text drawing API

e Only way to draw Unicode and the best
way to get Quartz for Carbon apps



ATSUI Features

* Full Unicode 3.2 Layout Support

» Truly Multilingual—one set of API to support
all languages

» Combining characters and complex scripts
» Languages not covered by WorldScript I or II
» Replaces WorldScript I on Mac OS X

e Automatic Font Substitution



More ATSUI Features

* Advanced typography

» Kerning, optical alignment, variation fonts,
ligatures, glyph alternatives, baseline adjust, . . -

» Vertical text layout (CJK)
* Editing

» Highlighting, hit testing, cursor movement
* Quartz Drawing



ATSUI and Quartz

* Ful
* Ful

y integrated with Quartz

| Quartz anti-aliasing

* Respects settings in the CGContext

» Color Space
» Scaling

* Uses Quartz text rendering attributes






/{/sz{(‘

{/71 f{((f‘[//{{/




ATSUI Throughout Mac OS X

CarbonrApp

Carbon HI'Tloolbox AppKit (Cocoa)

ATSUI

(Apple Type Services for ' Unicode Imaging)

Graphicsi(Quartz)

(Apple Type Services)

Application Services (Carbon)



When Should I Use
ATSUI Directly?

* Fine control

« Glyph positions, text at an angle or on a path,
line positioning

e Text features

» Vertical, justification control, optical alignment, . . -

* Writing your own text editing engine

« Can not use MLTE but need Unicode or
ATSUI features



ATSUI Concepts

* ATSUStyle Objects
* ATSUTextLayout Objects



How Do the Objects Fit In?

o AN it o mavy o o o o

ZOmLWIA—Y A4 —T x4 XL, Quartz, OpenGL., 4

» QuickTime&E WS 3EBHEDREMI ST T4 v I RTV /A —D
FICHRYUIMN>THY., 7RI by 70SOHDELTIE, Mac OS
XDUST 4y ABEZBERZREOHDICLTWET,

A

ATSUStyle
ATSUTextLayouts Styled Text
Unicode
Text Buffer 2



ATSUStyle Objects

* Opaque object that represents a collection
of stylistic attributes

* Never tied to a specific layout or run of text



What Can Be Stored
in ATSUStyle?

* Font, size, color, vertical, with- and cross-stream
shift, kern control, optical, hanging, . . -

* Font features (defined by font)
e Ligatures, swashes, variant glyphs, . . -

* Font variations
» Continuously variable weight, width, . . -



ATSUTextLayout Objects

* Ties Unicode text buffer with runs of ATSUStyle
* Keeps track of soft line breaks and tab stops

* Caches information about the text

* Customized through the use of Layout
and Line controls



Layout and Line Controls

* Allow the control of line width, rotation,
justification, flush, baseline, . . -

* Can be applied to an entire ATSUTextLayout
or an individual line



Demo



s

New ATSUI Features

Tom Madden
ATSUI Tamer



New Features

* Batch line breaking
* Tab support
* Direct access

* Style flattening

*Variant g

yphs

* Font Falll

hacks Objects

* Thread safety

® Text measurement



Batch Line Breaking

* Paragraph based, like ATSUI
* Can reduce line breaking time by up to 50%
* Less code than ATSUBreakLine



Old: ATSUBreakLine Loop

ItemCount numSoftBreaks;
UniCharArrayOffset currentStart = 0;
UniCharArrayOffset currentEnd = textLength;
o [o ]

ATSUBreakLine(
layout, currentStart, lineBreakWidth,
true, &currentEnd);

currentStart = currentEnd;
} while (currentEnd < textLength);

ATSUGetSoftLineBreaks(layout,
kATSUFromTextBeginning, KATSUToTextEnd, O,
NULL, &humSoftBreaks);



New: ATSUBatchBreakLines

ATSUBatchBreakLines(layout,
kATSUFromTextBeginning, KATSUToTextEnd,
lineBreakWidth, &numSoftBreaks);

* Can be used only if the maximum line break

width for all lines is the same



Tab Support

* Tab stops can now be set in an
ATSUTextLayout object

o ATSUSetTabArray
» ATSUGetTabArray

e Simplifies the task of implementing rulers



Tab Support—New Data Types

* ATSUTab
struct ATSUTab {
ATSUTextMeasurement tabPosition;
\ ATSUTabType tabType;
* ATSUTabType

« Left, right, and center tabs



ATSUI DirectAccess

* What is it?
e What can it be used for?

e How do I use it?



DirectAccess: What Is It?

* New set of API

» Direct access to glyph data during the
layout process

* New Callback Definition
» Control over ATSUI’s internal layout process



DirectAccess:
What Can It Be Used For?

* Fine control over layout metrics
* Override ATSUI's internal layout operations
* Glyph replacement



Using DirectAccess

* [nstall the operation override callback for
the operations you wish to override

* (Call
® (Call

» ATSUSetLayoutControls with the

kATSULayoutOperationOverrideTag tag
| ATSUI normally to measure and draw

back invoked when re-layout is needed



ATSUT's Layout Operations

® Linguistic
» Bi-directional level calculation
» Glyph Morphing
e Ligatures, contextual forms, etc.
* Kerning
* Tracking
* Baselines

* Justification



Which Operations
Can I Override?

* Justification
* Morph

* Kerning

* Baseline

* Tracking

* Post Layout

» To perform adf'ustment after ATSUI
has finished all operations



Callback Implementation

OSStatus(*ATSUDirectLayoutOperationOverrideProcPtr)(
ATSULayoutOperationSelector iCurrentOperation,
ATSULineRef iLineRef,
Uint32 iRefCon,
void *iOperationCallbackParameterPtr,
ATSULayoutOperationCallbackStatus *oCallbackStatus);

* Determine reason using iCurrentOperation
* Use iLineRef to get glyph data

* Tweak the glyph data

* Return call status in oCallbackStatus



How Do I Get the Glyph Data
From Inside the Callback?

* ATSUDirectGetLayoutDataArrayPtrFromLineRef
* Returns a direct pointer
* Fast

* Dispose of the data pointer by calling
ATSUDirectReleaseLayoutDataArrayPtr



Can I Get Glyph Data
Outside of the Callback?

* ATSUDirectGetLayoutDataArrayPtrFromTextLayout
* Returns a copy of the data

* Dispose of the data pointer by calling
ATSUDirectReleaseLayoutDataArrayPtr




What Data Makes
an ATSUI Glyph?

b 2

A

Baseline Delta

Real Position

Ac

vance Delta

Baseline



What Data Makes
an ATSUI Glyph?

* ATSLayoutRecord

struct ATSLayoutRecord {
ATSGlyphRef
ATSGlyphinfoFlags
ByteCount

Fixed

};

* Baseline Delta (Fixed)

* Advance Delta (Fixed)
¢ Style Index (Ulnt106)
* Device Delta (SInt16)

glyphliD;
flags;
originalOffset;
realPos;



s

Demo

DirectAccess



Style Flattening

* Flatten style run data to a stream
* Reconstruct styles from a stream

* Standard Pasteboard format
e ‘ustl’ version 2.0
» Used by MLTE
» Understood by Cocoa Applications
e All structures defined publicly



Flattening Styles

* ATSUFlattenStyleRunsToStream

* Used to flatten multiple style runs into a stream
of data

* Pass in an array of ATSUStyle objects, an array of
run lengths for the associated ATSUStyle objects,
and an allocated buffer



Reconstructing Style Runs

* ATSUUnflattenStyleRunsFromStream

* Returns the style objects and run information
N tWO Separate arrays

* Caller is responsible for disposing of the
ATSUStyle objects created by this call

* Caller is responsible for matching up the style
runs to the associated Unicode text

» Usually exported to the pasteboard
as ‘utxt’ data




Variant Glyphs

* Display glyphs that do not have an explicit
Unicode character to glyph mapping

e Variations of a glyph that does have
4 mapping

« Access to characters in the fonts that
otherwise would not be accessible




yphs

Variant Gl




Variant Glyph Support

* New ATSUStyle tag
 KATSUGlyphSelectorTag
* New Attribute Structure
» ATSUGIyphSelector
* Choose variant glyph by font specific glyph or CID

* Get variant glyph information from input
method via TSM

« kEventParamTextInputGlyphInfoArray text
Input event parameter

¢



Font Fallback Objects

* Specifies a search order for font substitution
» Reference to a list of ATSUFontIDs

* Attached to an ATSUTextLayout object

 KATSULineFontFallbacksTag

e Safer than relying on the global font fallback list




Font Fallback Objects

* New API to create, destroy, and manage font
fallback objects

 ATSUCreateFontFallbacks
» ATSUDisposeFontFallbacks
» ATSUSetObjFontFallbacks
 ATSUGetObjFontFallbacks
* Font fallback objects should be shared if possible

4‘

¢



ATSUT's Thread Safety

* ATSUI objects are thread safe
* ATSUI APIs are thread safe

» Be careful with global font fallback lists
set by ATSUSetFontFallbacks




Text Measurement

* Review
» Typographic vs. Image Bounds
e Three APIs to measure

* New options



Text Measurement:
Typographic vs. Image Bounds

Publish or Perish
Apple

Image Bounds

Typographic Bounds



Text Measurement:
ATSUGetGlyphBounds

* Typographic bounds of the final laid out line
» Returns bounding trapezoids
» Aligned on fractional pixel boundaries

* Useful when laying out line after line of text

« Prevents collisions with ascenders
and descenders



Text Measurement:
ATSUMeasureTextImage

* Image bounds of the final laid out line
» Returns bounding rectangle
» Aligned on integer, whole pixel bounc

aries

* Useful for figuring out the exact area in w.
ATSUI will draw

hich



Text Measurement:
ATSUMeasureText

* Typographic bounds of a line prior to final layout

» Returns bounding rectangle based on ascent,
descent, start point, and end point

» Aligned on fractional pixel boundaries

» Ignores any previously set line attributes such
as rotation, flushness, justification, etc.

* Will likely force an extra layout operation
* Useful for calculating your own line breaking



Text Measurement: New
Ascent and Descent Options

* Ascent Tag: KATSULineAscentTag

« Gets or sets the maximum typographical ascent of all
fonts used on a line or layout

*Descent + Leading Tag: KATSULineDescentTag

e Gets or sets the maximum typographical descent +
leading of all fonts used on a line or layout

* Use with ATSUGetLineControl or
ATSUGetLayoutControl

* The most efficient way to get the ascent or
descent + leading on Jaguar



s

ATSUI
Dos and Don'’ts

Aaron Haney



Layouts

* Don’t create a layout for each word,
style run, or line

* Do create a layout for each paragraph



Layouts (Cont.)

* Don’t throw away text layouts when text
is altered

* Do use ATSUSetTextPointerLocation,
ATSUTextDeleted, and ATSUTextInserted



Layouts (Cont.)

* Don’t use multiple layouts to flow text
around complex shapes

* Do use multiple lines and vary the line width

Example of flowing text around complex shapes:

'




Line Breaking

* Don’t loop over ATSUBreakLine unless it is
absolutely necessary

* Do use the new ATSUBatchBreakLines call



Line Breaking (Cont.)

* Don’t set soft line breaks manually
unless it is absolutely necessary

* Do pass true as the iUseAsSoftLineBreak
parameter to ATSUBreakLine whenever possible



Styles

* Don’t recreate style objects for each draw

* Do keep style objects around as long as they
might be needed



CG Drawing

* Don’t create and destroy the CGContext at
each draw unless it is absolutely necessary

* Do retain the same CGContext until all
drawing is completed



CG Drawing (Cont.)

* Don’t use CreateCGContextForPort
to do CG drawing

* Do use QDBeginCGContext and
QDEndCGContext



Measuring

* Don’t use ATSUMeasureText to get the ascent
and descent of a line

* Do use ATSUGetGlyphBounds; Or, on Jaguar
or later, use kKATSULineAscentTag and
kKATSULineDescentTag



Font Fallbacks

* Don’t use global font fallbacks

* Do use the per-layout font fallback objects
(ATSUFontFallbacks)



Font Fallbacks (Cont.)

* Don’t throw away ATSUFontFallbacks objects

* Do keep them around as long as possible, and
even share them between layouts



Object Sharing

* Don’t share ATSUTextLayout objects between
threads, unless running under Jaguar

* Do share ATSUStyle and ATSUFontFallback
objects between threads



s

Summary

Xavier Legros



Summary

* ATSUI brings developers:

o« Ad

vancec

o« Ad

 Unicode text drawing

vancec

 Typography

» Support for new languages



Documentation

* Apple Type Services for Unicode
Imaging Reference

* http:/developer.apple.com/techpubs/macosx/
Carbon/text/ATSUl/atsui.html

« Covers ATSUI 1.2
* Updated documentation for ATSUI 2.4

« On web site in early summer
« HTML and PDF



Roadmap

200 Making Your Application Room C
Unicode Savvy Tue., 9:00am
201 Font Manager Room C
Tue., 10:30am
208 MLTE: A Unicode Text Engine Room A2

Thurs., 9:00am

010 Going International
With Mac OS X

Room A2
Fri., 10:30am



Who to Contact

Xavier Legros
Mac OS X Evangelist
Apple Worldwide Developer Relations

xavier@apple.com

’

http:/developer.apple.com/wwdc2002/urls.html '



OX JUMPED OVER

HE LAZY DOCG.

Xavier Legros
Mac OS X Evangelist
xavier@apple.com

http:/developer.apple.com/wwdc2002/urls.html



& WWDC2002




& WWDC2002




& WWDC2002




